
INTERNATIONAL MATHEMATICS

TOURNAMENT OF TOWNS

SENIOR PAPER: YEARS 11,12

Tournament 40, Northern Autumn 2018 (O Level)

c©2018 Australian Mathematics Trust

Note: Each contestant is credited with the largest sum of points obtained for three
problems.

1. Is it possible to place a line segment XY inside a regular pentagon A1A2A3A4A5

so that all five angles 6 XAiY (i = 1, . . . , 5) are equal? (3 points)

2. Determine all positive integers n such that the numbers 1, 2, . . . , 2n can be divided
into pairs so that the product of sums of the numbers in each pair is a perfect
square. (4 points)

3. In parallelogram ABCD, 6 A is acute. A point N is chosen on the side AB so that
CN = AB. Suppose that the line AD is tangent to the circumcircle of triangle
CBN . Prove that D is the point of tangency. (5 points)

4. A nine-digit integer is called beautiful if all of its digits are different. Prove
that there exist at least 1000 beautiful numbers, each of which is divisible by
37. (5 points)

5. Petya is placing 500 kings on a 100×50 chess board so that the kings don’t attack
one another. Vasya is placing 500 kings on white squares of a 100 × 100 chess
board so that the kings don’t attack one another. Who has more ways to place
the kings? (5 points)



O Level Senior Paper Solutions

Prepared by Oleksiy Yevdokimov and Greg Gamble

1. No, it is not possible. Assume the contrary, i.e. it is possible to place a line
segment XY inside a regular pentagon A1A2A3A4A5 so that all five angles 6 XAiY
(i = 1, . . . , 5) are equal. Then the line XY cannot pass through any vertex Ai,
else such an angle 6 XAiY would be equal to 0 which is not possible if all five angles
6 XAiY are equal, as per assumption. Thus, by the Pigeon-Hole Principle three
vertices of the pentagon, say A1, A2 and A3 are on the same side of the line XY .
Consequently, points A1, A2, A3, X and Y lie on the same circle, since

6 XA1Y = 6 XA2Y = 6 XA3Y

and these angles are subtended by the same chord XY . However, this circle must
coincide with the circumcircle of the pentagon A1A2A3A4A5. Since the points X
and Y are distinct from the vertices of the pentagon, both points must lie outside
the pentagon, and so we come to a contradiction. Hence, our assumption is false.

2. Let S be the chosen partition of {1, 2, . . . , 2n} into pairs, and P be its corresponding
product of pair-sums.

Solution 1. There is a partition S for which P is a perfect square, for any n > 1.

For n = 1, there is only one choice for S, namely {{1, 2}}, and hence necessarily
P = 1 + 2 = 3, which is not a perfect square.

For even n, we have n = 2k for some integer k ≥ 1, and we can choose

S = {{1, 2n}, {2, 2n− 1}, . . . , {n, n + 1}}, giving

P = (1 + 2n)(2 + (2n− 1)) · · · (n + (n + 1)) = (2n + 1)n = ((2n + 1)k)2,

a perfect square.

For n = 3, we can choose S = {{1, 5} {2, 4}, {3, 6}}, giving P = 6 · 6 · 9 = 62 · 32,
a perfect square.

For odd n > 3, we have n = 2k + 1 for some integer k > 1. The key idea is that
n− 3 is even, so that after partitioning {1, 2, . . . , 6} into pairs as we did for n = 3,
the remaining n − 3 numbers can be partitioned into pairs in the way we did for
even n, i.e. we can choose S and hence P as

S = {{1, 5}, {2, 4}, {3, 6} {7, 2n}, {8, 2n− 1} {n + 3, n + 4}},
P = 6 · 6 · 9 · (7 + 2n)(8 + (2n− 1)) · · · ((n + 3) + (n + 4))

= 62 · 32 · (2n + 7)n−3 = (18(2n + 7)k−1)2,

where P is again a perfect square.

Solution 2. There is a partition S for which P is a perfect square, for any n > 1.

The key idea is that any four consecutive integers a, a + 1, a + 2, a + 3 can be
partitioned into the pairs {a, a + 3}, {a + 1, a + 2} whose contribution to P is a
square, namely

(a + (a + 3))((a + 1) + (a + 2)) = (2a + 3)2.



Thus, if 2n is divisible by 4, i.e. n is even, we first partition {1, 2, . . . , 2n} into
consecutive sets of 4, and then partition the sets of four as pairs, leading to P as
a product of squares.

If 2n = 2, i.e. n = 1, as we saw in Solution 1., P = 3 is unique and not a square.

This leaves 2n is not divisible by 4 having remainder 2, for which 2n ≥ 6. After
setting aside the first six numbers, what remains can first be partitioned into
consecutive sets of 4. The first 6 can be partitioned into pairs as per Solution 1.,
giving a contribution of 182 to P , and by the strategy above each set of 4 can be
partitioned into pairs that give a contribution to P that is a square.

Thus, for all n > 1, there is a partition S for which P is a product of squares, so
that as a consequence P is a perfect square.

Note. For n = 2 and n = 3 the partitions S that give a square P are unique. For
any other n they are not unique.

3. Solution 1. Let the point of tangency be T . Our strategy is to show that points
T and D coincide.

A B

C

T

N

D

Since BC and AD are parallel (opposite sides of parallelogram ABCD), we have,

6 CBT = 6 ATB, (alternate angles)

= 6 BCT, (by Tangent-Chord Theorem).

Hence, triangle BTC is isosceles. So,

BT = CT

6 ABT = 6 NBT, (same angle)

= 6 NCT, (subtended by same arc)

AB = CN, (given).

So, triangles ABT and NCT are congruent (by the SAS Rule). Therefore,

6 BAT = 6 CNT

= 6 CBT, (subtended by same arc)

= 6 BCT, (by above)

Hence, 6 ABC + 6 BCT = 6 ABC + 6 BAT

= 180◦, (cointerior angles).



Thus, AB and CT are parallel, and so ABCT is also a parallelogram. Hence,
points T and D coincide, and hence D is indeed the point of tangency.

Solution 2. Again, let the point of tangency be T . As in Solution 1., we will show
that points T and D coincide.

A B

C

T

N

D

We have,

CN = AB, (given)

= CD, (since ABCD is a parallelogram).

So triangle NCD is isosceles. Therefore,

6 DNC = 6 NDC

= 6 AND, (alternate angles).

Thus, ND is angle bisector of 6 ANC. On the other hand,

6 ATN = 6 TCN, (by the Tangent-Chord Theorem)

6 TAN = 180◦ − 6 CBN, (cointerior angles)

= 6 CTN, (BCTN is cyclic).

Thus, triangles ATN and TCN are similar. So 6 ANT = 6 TNC, and hence
NT is also an angle bisector of 6 ANC. Thus, the lines NT and ND coincide,
and consequently points D and T also coincide. Hence, D is indeed the point of
tangency.

4. Solution 1. Any nine-digit integer N can be represented in the following way

N = 106A + 103B + C = 999 · (1001A + B) + (A + B + C),

where A, B and C are the numbers formed by the first three digits of N , the middle
three digits of N , and the last three digits of N , respectively.

Since 1 + 2 + · · ·+ 9 = 45, one can partition the digits 1, 2, . . . , 9 into three triples,
having a common sum of 15; for example, (1, 5, 9), (2, 6, 7) and (3, 4, 8). If the
three digits from one triple are placed in the leftmost positions of the numbers A,
B and C, the digits of another triple are placed in the middle positions of A, B



and C, and the digits of the third triple are placed in the rightmost positions of
A, B and C, then A + B + C = 15 · 111 = 45 · 37. Since 37 also divides 999, a
beautiful number with such a configuration for A, B and C will be divisible by 37.
Since we have six ways to arrange the digits of a triple in the designated position
of A, B and C, for each of three triples, and also there are six ways to arrange the
triples among the digit positions, we have at least 64 = 1296 beautiful numbers,
each of which is divisible by 37.

Solution 2, by William Steinberg. Observe that 3 · 37 = 11 and 33 · 37 = 999,
so that

102 ≡ −11 (mod 37) and 103 ≡ 1 (mod 37).

Let the decimal representation of a beautiful number be a8a7 . . . a1a0. Then

a8a7 . . . a1a0 =
8∑

k=0

ak × 10k

≡ (a0 + a3 + a6) · 1
+ (a1 + a4 + a7) · 10

+ (a2 + a5 + a8) · (−11) (mod 37)

Observe that
1 + 10 + (−10) ≡ 0 (mod 37).

So, if it is possible to have

a0 + a3 + a6 = a1 + a4 + a7 = a2 + a5 + a8

= S, say,

then a8a7 . . . a1a0 ≡ 0 (mod 37).

Since 1 + 2 + · · ·+ 9 = 45, indeed we can have S = 15. Let

D = {{a0, a3, a6}, {a1, a4, a7}, {a2, a5, a8}}
T = {{1, 6, 8}, {2, 4, 9}, {3, 5, 7}}

where D are the digit triples whose sum we want to be 15, and T is a partition
of {1, 2, . . . , 9} into triples whose sum is 15. Then the digit triples in T can be
assigned to the three triples in D in 3! = 6 ways, and after such an assignment the
digits of each T -triple can be assigned to the digits of a D-triple in 3! = 6 ways.
So there are at least 64 = 1296 > 1000 beautiful numbers that are divisible by 37.

Solution 3. We consider beautiful numbers that are divisible by 999, observing,
since 37 divides 999, that such beautiful numbers are divisible by 37. Let the
decimal representation of a beautiful number be a8a7 . . . a1a0. Then, noting that
103 ≡ 1 (mod 999), we have

a8a7 . . . a1a0 =
8∑

k=0

ak × 10k

≡ (a0 + a3 + a6) · 1
+ (a1 + a4 + a7) · 10

+ (a2 + a5 + a8) · 100 (mod 999)

≡ 100x + 10y + z (mod 999),



where x = a2 + a5 + a8, y = a1 + a4 + a7, z = a0 + a3 + a6.

We claim that if d is a divisor of 999 and 100x + 10y + z is divisible by d, then
numbers 100y+10z+x and 100z+10x+y are also divisible by d. (In fact, we only
use this property with d = 999.) Indeed, this follows from the observation that

100y + 10z + x = 10(100x + 10y + z)− 999x,

and its companion derived by rotating x to y, y to z, and z to x.

Note that 100 ·8 + 10 ·18 + 19 = 999. Below, we find five partitions of the non-zero
digits into triples whose sums are 8, 18 and 19, respectively:

(1, 3, 4), (5, 6, 7) and (2, 8, 9);
(1, 3, 4), (2, 7, 9) and (5, 6, 8);
(1, 2, 5), (4, 6, 8) and (3, 7, 9);
(1, 2, 5), (3, 7, 8) and (4, 6, 9);
(1, 2, 5), (3, 6, 9) and (4, 7, 8).

So, we have (x, y, z) is a rotation of (8, 18, 19), of which there are 3, and each triple
of digits summing to x, y or z can be arranged in 6 ways, and this can be done
with each of the 5 partitions of the non-zero digits given above. Hence, there are
at least 5 · 3 · 63 = 3240 beautiful numbers divisible by 999 (and hence divisible by
37).

Remark. The intended lower bound for the number of beautiful numbers divisible
by 37 for the Senior problem, was 2018. There are many ways of partitioning
{1, 2, . . . , 9} into triples whose sum is 15 (so-called magic square triples). Solutions
1. and 2. show two ways. If these two different partitions are used in each of
Solutions 1. and 2., the lower bound of 1296 beautiful numbers divisible by 37,
can be doubled to 2592 > 2018. A computer search shows that the number of
beautiful numbers that are divisible by 37, is in fact 89 712; this compares with
b9 · 9!/37c = 88 268, if beautiful numbers were roughly distributed equally across
the residue classes modulo 37.

5. In our discussions below we understand that an m × n grid has m rows and n
columns.

Solution 1. Vasya has more ways to place the kings. We will establish a one-to-
one correspondence between all of Petya’s ways and some of Vasya’s ways. In this
way, it will be sufficient to show that Vasya has an extra way of placing the kings
that is not part of the established one-to-one correspondence.

Indeed, extend Petya’s 100×50 chess board to the right to reach the size 100×100
Vasya has, and reflect all kings placed on black squares in any of Petya’s ways with
respect to the rightmost border of Petya’s initial chess board of size 100× 50. We
claim, the result of each such reflection is one of Vasya’s ways of placing 500 kings
on white squares of a 100× 100 chess board.

In order to see this, fix one of Petya’s king configurations. Since only the black
kings have been reflected over the rightmost border of Petya’s 100×50 chess board,
all kings placed on white squares, in the chosen one of Petya’s configurations, stay
where they were before the reflection, and they certainly don’t attack one another.



Likewise, since the relected kings didn’t attack one another on the left half of the
100×100 chess board (which is the chess board of size 100×50) before the reflection,
they don’t attack one another, after the reflection. Moreover, the square colours of
the reflected board must be flipped (black goes to white and white goes to black),
to ensure the colours alternate across the axis of relection. So the relected kings
end up on white squares. We also note that kings that were on black squares in
column 50 have moved to adjacent white squares in column 51 and cannot attack
any kings in column 50. Thus all kings in the resulting configuration are on white
squares and don’t attack one another, and so we have one of Vasya’s configurations.

Hence Vasya has at least as many ways as Petya to place the 500 kings.

Now we show there is an extra configuration Vasya has that cannot have come
from one of Petya’s ways via the above one-to-one correspondence. Choose all the
white squares of 50 non-adjacent rows of the 100 × 100 chess board to place the
kings. Then the kings are not attacking for Vasya, but if the kings are reflected
back to the left they end up on black squares adjacent (and hence attacking) kings
on white squares. So this valid configuration for Vasya is not one of the ones in
one-to-one correspondence with one of Petya’s.

Thus Vasya has at least one more way to place 500 kings on his board than Petya
has on his.

Solution 2. Vasya has more ways to place the kings. As in Solution 1., our
strategy is to first establish a one-to-one correspondence between all of Petya’s
ways and some of Vasya’s ways, and then show that Vasya has an extra way of
placing the kings that is not part of the established one-to-one correspondence.

This time we start by covering each row of the 100 × 100 chess board with fifty
1 × 2 dominos. Now apply a horizontal contraction to the board to get Petya’s
100 × 50 chess board, with the result that each domino shrinks to be 1 × 1. No
matter how Petya places 500 kings (not more than one king to a shrunken domino),
Vasya can move each king to the white square on his un-shrunken domino. If two
kings somewhere on Vasya’s chess board in such a constructed configuration, were
to attack one another, then they they would be in adjacent dominos, and so they
would be attacking one another in Petya’s corresponding configuration. So, in fact,
this construction yields a valid one-to-one correspondence between all of Petya’s
ways and some of Vasya’s ways.

Finally, the example of Solution 1., namely that the kings are placed on all the
white squares of 50 rows, no two of which are adjacent, is a valid way for Vasya to
place the kings that is outside the one-to-one correspondence.

Thus Vasya has at least one more way to place 500 kings on his board than Petya
has on his.


